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Brain white matter morphological structure
correlation with its optical properties estimated
from optical coherence tomography (OCT) data

ALEXANDER A. MOISEEV,1 KSENIA A. ACHKASOVA,2,* ELENA B.
KISELEVA,2 KONSTANTIN S. YASHIN,2 ARSENIY L. POTAPOV,2

EVGENIA L. BEDERINA,2 SERGEY S. KUZNETSOV,3 EVGENY P.
SHERSTNEV,1 DMITRY V. SHABANOV,1 GRIGORY V. GELIKONOV,1

YULIYA V. OSTROVSKAYA,4 AND NATALIA D. GLADKOVA2

1Institute of Applied Physics Russian Academy of Sciences, 603155, 46, Ulyanova str., Nizhny Novgorod,
Russia
2Privolzhsky Research Medical University, 603950, 10/1, Minin and Pozharsky sq., Nizhny Novgorod,
Russia
3N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, 603093, 190, Rodionova str., Nizhny
Novgorod, Russia
4Dentistry clinic “IQDent”, 105120, 10, 2nd Syromyatnichesky Lane, Moscow, Russia
*achkasova.k@bk.ru

Abstract: A pilot post-mortem study identifies a strong correlation between the attenuation
coefficient estimated from the OCT data and some morphological features of the sample, namely
the number of nuclei in the field of view of the histological image and the fiber structural
parameter introduced in the study to quantify the difference in the myelinated fibers arrangements.
The morphological features were identified from the histopathological images of the sample taken
from the same locations as the OCT images and stained with the immunohistochemical (IHC)
staining specific to the myelin. It was shown that the linear regression of the IHC quantitative
characteristics allows adequate prediction of the attenuation coefficient of the sample. This
discovery opens the opportunity for the usage of the OCT as a neuronavigation tool.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The number of papers devoted to the study of the brain white matter (WM) using optical methods
has been growing in recent years [1–4]. The necessity to understand the relationship between
the optical properties of the WM and its morphological features (the arrangement of fibers,
the number of cells) also arises, since optical methods claim to be intraoperative diagnostic
techniques of some diseases associated with invasion or damage to the WM.

WM forms up to 40% of brain tissue and has a multicomponent structure including different
cell types (mostly glial) and extracellular matrix [5]. Its main structural unit is myelinated fiber
consisting of neuronal axonal process covered with a myelin sheath, formed by oligodendrocyte
process. It is known, that structural characteristics of WM are not identical throughout the brain,
where the differences can be detected in fibers diameter and their packing density [6–10] as well
as the size and density of the glial cells [11]. Some brain areas are formed by parallel densely
packed fibers that form so-called pathways (or tracts); others contain more loosely located fibers
due to the inclusion of neurons or a large amount of glia. Accordingly, the concentration of fibers
and cell nuclei per volume unit in such areas will be different. In our opinion, it is important
to take these morphological features into account when using optical methods, such as optical
coherence tomography (OCT).
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OCT is a promising method in brain imaging finding application in translational studies and
clinical practice [12]. The number of studies [3,4,13,14] have shown that OCT has a potential for
studying the WM morphological features and for clarifying the boundaries of the infiltrative brain
tumors within surrounding WM. In particular, high resolution OCT provides contrast imaging
of myelinated nerve fibers, thereby allowing visualization of the pathways in the brain [14].
The addition of polarization sensitivity makes the method more specific to the direction of the
bundles of nerve fibers [15]. Moreover, it has demonstrated good cross-validation with diffusion
tensor imaging (DTI) [16] that is currently used for preoperative planning in brain tumor surgery
providing the information about the location and orientation of white matter tracts in relation to
the tumor mass.

Application of OCT for detection of glial tumors growth margin is based on visual (qualitative)
assessment of light attenuation profile in B-scans [17–19] and quantitative analysis (mostly by
calculating the threshold values of attenuation coefficient) of OCT data [3,4,19–21]. Commonly,
there is no emphasis on the location of the tumor in the brain, where the WM samples are
obtained. At the same time, the tumor can be located both near vital tracts and at a distance from
them. It seems to be important to take into account the structure of WM when determining the
criteria for the differential diagnosis of normal WM and a tumor. In [22], the dependence of
the attenuation coefficient on the degree of WM infiltration by tumor cells was shown; however,
the work devoted to the detailed analysis of the optical properties of normal WM in different
areas of the brain and evaluating the effect of its morphological features on the attenuation
coefficient is scarce. At the same time, the development of OCT approaches to detailed in vivo
visualization of white matter, is extremely important since it will solve a number of clinical and
experimental problems. On the one hand, the possibility of obtaining real-time information about
the structural characteristics of the white matter in the operating room will allow the neurosurgeon
to specify the boundaries of tumor resection and prevent damage to healthy pathways. On the
other hand, real-time visualization of white matter tracts will allow experimental studying the
diseases that damage myelinated fibers, as well as developing new treatment strategies without
the need for long-term histological analysis. However, despite the fact that OCT allows obtaining
high-resolution images of white matter, the relationship between the nature of the received signal
and the morphological features of the white matter remains unexplored nowadays, which is
critical for further study of the optical properties of the pathways.

The most reliable way to identify the structure of the white matter is immunohistochemical
study (IHC) of histological sections using antibodies to the structural proteins of the myelin sheath.
Most often, antibodies to myelin basic protein (MBP) are used due to the fact that it is the main
structural element of the myelin sheath [23,24]. Staining is performed with antibodies labeled
with the chromogen diaminobenzidine (DAB), which is a substrate for horseradish peroxidase.
During the study, antibodies bind to their corresponding antigens, and DAB polymerizes to form
a light brown product, which allows the identification of myelinated fibers. Additional staining
of cell nuclei with hematoxylin is performed allowing evaluation of the amount of cells, where
oligodendrocytes are the most widespread ones. Thus, as a result of IHC analysis, it is possible
to assess the arrangement of the different fibers, as well as the number of cellular elements,
regardless their specificity. In general, IHC sections may be analyzed using manual or automated
techniques to count the cells and fibers amount relatively to the entire study area [25,26]. In the
present study the relation between the quantitative IHC parameters and the attenuation coefficient,
estimated from the OCT data was established and the linear model able to predict attenuation
coefficient based on the IHC quantitative parameters was introduced.

While it is widely believed that the major factor affecting the attenuation coefficient of the WM
sample is the density of the myelinated fibers, the dataset collected in the present study suggests
otherwise. The statistical analysis shows that the observed difference in the attenuation coefficient
values are explained mostly by the number of nuclei, observed in the IHC images field-of-view
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and by the parameter, introduced in the present study aimed to reflect the how uniformly the
fibers are distributed across the IHC image. The lack of dependence of the attenuation coefficient
on the fibers density, defined in the present study as a ratio of the area, occupied by the fibers
in the IHC image to the area of the image, can be explained by the narrow range of the fiber
density values in the collected dataset. Thus, the possibility still remains that the fiber density is
the major factor, affecting the attenuation coefficient and just the peculiarities of the collected
dataset do not allow to reflect this fact. However, the present study strongly suggests that the
other morphological factors also influence the attenuation coefficient value and should be taken
into account while analyzing the factors affecting the optical properties of the WM samples.

2. Materials and methods

2.1. Tissue samples and design of the study

The study was conducted on 6 post-mortem human brain specimens (3 right and 3 left hemispheres),
obtained from patients aged from 58 to 69, whose death was not caused by intracranial pathology.

The regions of interest included different areas of white matter and fiber tracts, both superficial
and deep-seated, with different arrangement of fibers and the number of cells. In total, 24 samples
of white matter and fiber tracts were obtained from following brain areas: (1) cortical - U-shaped
fibers (n= 6); (2) subcortical - long-range association fibers (n= 8); (3) corpus callosum (n= 4);
(4) capsula interna (n= 3); (5) brainstem (n= 3) (Fig. 1). The surface of the samples under study
varied from 0.5× 1 cm to 0.7× 1.5 cm.

field-of-view and by the parameter, introduced in the present study aimed to reflect the how 
uniformly the fibers are distributed across the IHC image. The lack of dependence of the 
attenuation coefficient on the fibers density, defined in the present study as a ratio of the area, 
occupied by the fibers in the IHC image to the area of the image, can be explained by the narrow 
range of the fiber density values in the collected dataset. Thus, the possibility still remains that 
the fiber density is the major factor, affecting the attenuation coefficient and just the 
peculiarities of the collected dataset do not allow to reflect this fact. However, the present study 
strongly suggests that the other morphological factors also influence the attenuation coefficient 
value and should be taken into account while analyzing the factors affecting the optical 
properties of the WM samples.

2. Materials and methods
2.1 Tissue samples and design of the study

The study was conducted on 6 post-mortem human brain specimens (3 right and 3 left 
hemispheres), obtained from patients aged from 58 to 69, whose death was not caused by 
intracranial pathology. 

The regions of interest included different areas of white matter and fiber tracts, both 
superficial and deep-seated, with different arrangement of fibers and the number of cells. In 
total, 24 samples of white matter and fiber tracts were obtained from following brain areas: (1) 
cortical - U-shaped fibers (n=6); (2) subcortical - long-range association fibers (n=8); (3) corpus 
callosum (n=4); (4) capsula interna (n=3); (5) brainstem (n=3) (Figure 1). The surface of the 
samples under study varied from 0.5 x 1 cm to 0.7 x 1.5 cm. 

Fig. 1. The regions of interest where the white matter samples were collected and the amount of obtained OCT 
and IHC images.Fig. 1. The regions of interest where the white matter samples were collected and the

amount of obtained OCT and IHC images.
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On each sample, the area designated for the OCT study was marked with a surgical suture.
After obtaining OCT images, all samples were fixed in 10% formalin solution and subjected for
IHC study. The tissue dehydration during the IHC sample preparation leads to the shrinkage
of the brain samples, which made pixel-to-pixel alignment of the images in both modalities
challenging, but the presence of the suture allowed coarse alignment and assure that both IHC
and OCT images were taken from approximately the same location (see Fig. 2).

On each sample, the area designated for the OCT study was marked with a surgical suture. 
After obtaining OCT images, all samples were fixed in 10% formalin solution and subjected 
for IHC study. The tissue dehydration during the IHC sample preparation leads to the shrinkage 
of the brain samples, which made pixel-to-pixel alignment of the images in both modalities 
challenging, but the presence of the suture allowed coarse alignment and assure that both IHC 
and OCT images were taken from approximately the same location (see Figure 2).

 

Fig. 2. Colocalization of the sites of OCT and IHC imaging. a – IHC image on x2.5 resolution; b – OCT image. 
The approximate site of the OCT image in the low resolution IHC image is delineated with purple rectangle. c - IHC 

image on x20 resolution. The site of the high resolution IHC image in the low resolution IHC image is delineated 
with blue rectangle. All scalebars are 400 µm.

The regions of interest were chosen in connection with their frequent involvement in tumor 
invasion process as well as under assumption of their morphological heterogeneity. 

All samples were scanned by CP OCT device within 4-6 hours after the patients’ deaths due 
to the protocol for establishing the onset of biological death and the procedure for conducting 
an autopsy and then subjected to histological examination using IHC staining (Figure 3). 

Fig. 2. Colocalization of the sites of OCT and IHC imaging. a – IHC image on x2.5
resolution; b – OCT image. The approximate site of the OCT image in the low resolution
IHC image is delineated with purple rectangle. c - IHC image on x20 resolution. The site
of the high resolution IHC image in the low resolution IHC image is delineated with blue
rectangle. All scalebars are 400 µm.

The regions of interest were chosen in connection with their frequent involvement in tumor
invasion process as well as under assumption of their morphological heterogeneity.

All samples were scanned by CP OCT device within 4-6 hours after the patients’ deaths due to
the protocol for establishing the onset of biological death and the procedure for conducting an
autopsy and then subjected to histological examination using IHC staining (Fig. 3).

Both types of images – OCT (n= 64) and IHC (n= 68) – were quantitatively analyzed. Finally,
the relationship between optical properties and morphological characteristics were established.

The study was approved by the Ethical Committee of the Privolzhsky Research Medical
University (protocol No 6 dated 17.04.2019), and informed consent was obtained from each
subject`s legal guardian. All methods were performed in accordance with the relevant guidelines
and regulations.
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Fig. 3. Study design. 

Both types of images – OCT (n=64) and IHC (n=68) – were quantitatively analyzed. Finally, 
the relationship between optical properties and morphological characteristics were established. 

The study was approved by the Ethical Committee of the Privolzhsky Research Medical 
University (protocol No 6 dated 17.04.2019), and informed consent was obtained from each 
subject`s legal guardian. All methods were performed in accordance with the relevant 
guidelines and regulations. 

2.2 CP OCT device 

The study was performed with a spectral-domain CP OCT device developed in the Institute of 
Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod, Russia). CP OCT is 
a modification of polarization-sensitive OCT that allows recording changes in the state of 
polarization both due to birefringence and due to cross-scattering. As a result, two images are 
recorded simultaneously: an image in co-polarization (reflection of light with a polarization 
state parallel to the probe is detected) and an image in cross-polarization (only reflection of 
light with orthogonal polarization is detected). The sum of OCT signal intensities in both 
polarizations constitutes for full signal reflected from the sample and is not affected by the 
polarization effects. The CP OCT device has a common-path interferometric layout that 
operates at a 1.3 μm central wavelength with axial and lateral resolutions of 10 μm and 15 μm 
in air, respectively. It has a 20,000 А-scan/s scanning rate and performs 2D lateral scanning 
with a range of 2.4 × 2.4 mm2 (256 x 256 A-scans) to obtain a 3D distribution of backscattered 
light in the polarization parallel and orthogonal to the polarization of the probing beam. 
Acquisition of each 3D OCT volume takes 26 seconds, while two-dimensional and en-face 
images in co- and cross-polarizations are separately visualized on a personal computer screen, 
as well as a three-dimensional image in the co- polarization. All images were collected using 
contactless scanning method. In total, the 64 3D CP OCT images were obtained and quantified 
(Figure 3). 

2.3 CP OCT data processing

Fig. 3. Study design.

2.2. CP OCT device

The study was performed with a spectral-domain CP OCT device developed in the Institute of
Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod, Russia). CP OCT
is a modification of polarization-sensitive OCT that allows recording changes in the state of
polarization both due to birefringence and due to cross-scattering. As a result, two images are
recorded simultaneously: an image in co-polarization (reflection of light with a polarization state
parallel to the probe is detected) and an image in cross-polarization (only reflection of light with
orthogonal polarization is detected). The sum of OCT signal intensities in both polarizations
constitutes for full signal reflected from the sample and is not affected by the polarization effects.
The CP OCT device has a common-path interferometric layout that operates at a 1.3 µm central
wavelength with axial and lateral resolutions of 10 µm and 15 µm in air, respectively. It has a
20,000 A-scan/s scanning rate and performs 2D lateral scanning with a range of 2.4× 2.4 mm2

(256× 256 A-scans) to obtain a 3D distribution of backscattered light in the polarization parallel
and orthogonal to the polarization of the probing beam. Acquisition of each 3D OCT volume
takes 26 seconds, while two-dimensional and en-face images in co- and cross-polarizations are
separately visualized on a personal computer screen, as well as a three-dimensional image in the
co- polarization. All images were collected using contactless scanning method. In total, the 64
3D CP OCT images were obtained and quantified (Fig. 3).

2.3. CP OCT data processing

Quantitative assessment of the OCT data was accomplished with the depth resolved approach
that is derived from the assumption that the backscattering coefficient is proportional to the
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attenuation coefficient with the constant ratio between the two in the OCT depth range [27]:

Ii ∼ α · µatt(zi) · exp
⎡⎢⎢⎢⎢⎣−2 ·

i∑︂
j=0
µatt(zi) · ∆

⎤⎥⎥⎥⎥⎦ (1)

where Ii is the sum of OCT signal intensities in both polarization channels, µatt is the specimen
attenuation coefficient, zi is the depth coordinate, ∆ is the pixel size along the axial dimension.

In the present study, the method proposed in [28] was adopted. In comparison with the original
work [27] the updated calculation approach rigorously accounts to the additive noise, which
mitigates systemic attenuation coefficient underestimation in the high Signal-to-Noise Ratio
(SNR) area and increase of the estimated attenuation coefficient value near the bottom of the
image [21]. In this case, the depth-resolved attenuation coefficient can be written as:
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where <N > is the amplitude of the noise floor, which can be estimated before the measurements,
SNRiµ is the local signal-to-noise ratio (SNR) for the attenuation coefficient distribution, which
is estimated by the averaging in the rectangular window with the side of W pixels. The W value
should be sufficiently large (≥32 pixels) to provide sufficient statistics inside each window. The
value (Ij+Nj) is simply the measured signal at the depth j. Thus, all the values from Eq. (2) can
be measured from the cross-sectional OCT intensity distributions. The attenuation coefficient
was estimated in the 120-300 µm depth range. The en-face color-coded maps were built based on
its values distribution for every OCT image.

One can note, that in the study the confocality of the OCT system and the spectral OCT roll-off
were not taken into account. As been shown in [28], with the characteristics of the utilized OCT
setup, the error for the attenuation coefficient estimation would not exceed 10%.

2.4. Immunohistochemical study

Brain samples were fixed in 10% formalin for 48 hours and a series of histological sections was
made. Then IHC analysis was performed using antibodies to MBP (Abcam, USA). The staining
technique is based on using the antibodies that are labeled with chromogen diaminobenzidine
(DAB). As soon as antibodies bind with MBP, DAB polymerizes to form a light brown product,
which allows the identification of myelinated fibers. Additionally, to reveal the cells nuclei the
staining with hematoxylin was carried out. As a result of IHC staining it is possible to identify
both myelinated fibers based on the DAB and cells nuclei based on hematoxylin.

Due to the use of a manual technique for conducting IHC studies, the intensity of staining was
heterogeneous in different samples, which led to a necessity to perform visual assessment of the
quality of staining of the sections. Samples with insufficient contrast of the myelinated fibers
were screened out by an expert. (see Fig. 4 for an example of a sample with insufficient fibers
contrast).

From each selected histological section, 3-4 images with a size of 490 * 653 µm were obtained.
The region of interest in the sample was marked by stitching the brain tissue with a surgical
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was heterogeneous in different samples, which led to a necessity to perform visual assessment 
of the quality of staining of the sections. Samples with insufficient contrast of the myelinated 
fibers were screened out by an expert. (see Fig. 4 for an example of a sample with insufficient 
fibers contrast). 

Fig. 4. a – an example of the IHC image screened out by an expert due to the low contrast of the fibers; b – an 
example of the IHC image included in the study.

From each selected histological section, 3-4 images with a size of 490 * 653 μm were 
obtained. The region of interest in the sample was marked by stitching the brain tissue with a 
surgical suture (see Figure 2). Although such approach does not allow exact match of the OCT 
and IHC images, it can guarantee that both were taken from the same area of approx. 5x5 mm. 
Note also that due to screening out of the low-quality IHC images, some OCT images do not 
have the IHC counterpart, but all IHC images do have a corresponding IHC image.

2.5 Quantitative evaluation of immunohistochemical images 

To quantitatively access the morphological differences between white matter from different 
brain images, the IHC images were numerically evaluated. First, the images were transformed 
from RGB to optical density as follows [30]: 

 10logOD RGB  (3),
where RGB is an RGB color vector with each component normalized to [0,1]. This 
transformation provides a space where a linear combination of stains will result in a linear 
combination of OD values [30]. This allows decomposition of the OD distribution into two 
stains, used for the IHC imaging as follows:

1
satM Stain OD  (4),

where Msat is the matrix of stain saturations and Stain is the matrix of stain vectors. Such 
decomposition allows separation of fibers and nuclei images in the IHC image, as can be seen 
from the Figure 5a,c,d.
The matrix of stain vectors was estimated for each IHC image separately. For this purpose, the 
OD distribution was transformed into spherical coordinates and scatterplot of the polar (θ) and 
azimuthal (φ) angles was analyzed (see Figure 5b). Such a transformation allows simple 
heuristics to define the values corresponding to the two stains as follows:
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where DAB and Hem are points in the IHC image that were treated as points stained in the 
single dye (DAB and hematoxylin respectively). The stain vectors estimation was done with 
the averaging of the optical density of corresponding points. Note that the ultimate goal of the 

Fig. 4. a – an example of the IHC image screened out by an expert due to the low contrast
of the fibers; b – an example of the IHC image included in the study.

suture (see Fig. 2). Although such approach does not allow exact match of the OCT and IHC
images, it can guarantee that both were taken from the same area of approx. 5× 5 mm. Note also
that due to screening out of the low-quality IHC images, some OCT images do not have the IHC
counterpart, but all IHC images do have a corresponding IHC image.

2.5. Quantitative evaluation of immunohistochemical images

To quantitatively access the morphological differences between white matter from different brain
images, the IHC images were numerically evaluated. First, the images were transformed from
RGB to optical density as follows [29]:

OD = −log10(RGB), (3)

where RGB is an RGB color vector with each component normalized to [0,1]. This transformation
provides a space where a linear combination of stains will result in a linear combination of OD
values [29]. This allows decomposition of the OD distribution into two stains, used for the IHC
imaging as follows:

Msat = Stain−1 × OD, (4)

where Msat is the matrix of stain saturations and Stain is the matrix of stain vectors. Such
decomposition allows separation of fibers and nuclei images in the IHC image, as can be seen
from the Fig. 5(a),(c),d.

The matrix of stain vectors was estimated for each IHC image separately. For this purpose,
the OD distribution was transformed into spherical coordinates and scatterplot of the polar (θ)
and azimuthal (φ) angles was analyzed (see Fig. 5(b)). Such a transformation allows simple
heuristics to define the values corresponding to the two stains as follows:

DAB = φ>percentile(φ, 99)

Hem = φ<percentile(φ, 1)
, (5)

where DAB and Hem are points in the IHC image that were treated as points stained in the
single dye (DAB and hematoxylin respectively). The stain vectors estimation was done with
the averaging of the optical density of corresponding points. Note that the ultimate goal of
the decomposition was separation of the fibers and nuclei in the IHC images, not the precise
estimation of the stains. The concentration of the DAB dye was treated as the fibers image and
concentration of the hematoxylin was treated as the nuclei image.
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decomposition was separation of the fibers and nuclei in the IHC images, not the precise 
estimation of the stains. The concentration of the DAB dye was treated as the fibers image and 
concentration of the hematoxylin was treated as the nuclei image.

Fig. 5. IHC image decomposition into fibers and nuclei images. a – IHC image; b – IHC image pixel distribution in 
azimuthal angle - polar angle space with stains estimated according to eq. (5) marked as crosses; c – image of the 

fibers; d – image of the nuclei.

The obtained fiber and nuclei images, (distributions of the corresponding stains concentrations) 
were binarized and analyzed. For nuclei analysis the total number of nuclei in the field of view 
was estimated. To numerically reveal the relevant difference in the fibers distribution, two 
parameters were utilized. Firstly, the fibers density, defined as the number of binarized fibers 
divided by the total area of the IHC image in pixels:

,
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Where Bi,j is the value of the pixel of the binarized fibers image, Nimage is the total number of 
pixels in the IHC image. The second parameter was proposed to reflect the difference in the 
fibers distributions (see Figure 6) from the thick bundles separated by relatively big gaps to the 
uniform mesh of thin fibers filling the whole field of view:
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Fig. 5. IHC image decomposition into fibers and nuclei images. a – IHC image; b –
IHC image pixel distribution in azimuthal angle - polar angle space with stains estimated
according to Eq. (5) marked as crosses; c – image of the fibers; d – image of the nuclei.

The obtained fiber and nuclei images, (distributions of the corresponding stains concentrations)
were binarized and analyzed. For nuclei analysis the total number of nuclei in the field of
view was estimated. To numerically reveal the relevant difference in the fibers distribution, two
parameters were utilized. Firstly, the fibers density, defined as the number of binarized fibers
divided by the total area of the IHC image in pixels:

Dens =

∑︁
i,j

Bi,j

Nimage
, (6)

Where Bi,j is the value of the pixel of the binarized fibers image, Nimage is the total number of
pixels in the IHC image. The second parameter was proposed to reflect the difference in the
fibers distributions (see Fig. 6) from the thick bundles separated by relatively big gaps to the
uniform mesh of thin fibers filling the whole field of view:
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where FSP is the proposed fiber structural parameter, E is the expected value function, Bi,j is the
value of the pixel of the binarized fibers image, Nrow, Ncolumn are number of pixels in rows and
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columns of the IHC image respectively. As can be seen from the Fig. 6(e), the gaps and bundles
structure of the fibers leads to the higher standard deviation of the total number of binarized
pixels in the rows and columns of the image, which is easily quantified by the proposed parameter
FSP.

Where FSP is the proposed fiber structural parameter, E is the expected value function, Bi,j is 
the value of the pixel of the binarized fibers image, Nrow, Ncolumn are number of pixels in rows 
and columns of the IHC image respectively. As can be seen from the Figure 6e, the gaps and 
bundles structure of the fibers leads to the higher standard deviation of the total number of 
binarized pixels in the rows and columns of the image, which is easily quantified by the 
proposed parameter FSP.

Fig. 6. FSP intuition. a,b – IHC images of the brain stem (a) and cortical area (b); c,d – binarized fibers in the panels 
a and b; e – total number of pixels equal to 1 in the rows as a function of the row number. The standard deviation of 

this value contributes to the proposed FSP according to eq (7).

2.4 Characteristic attenuation coefficient values in brain areas

To evaluate the characteristic attenuation coefficient value in each OCT image the 64-bin 
histogram of the value was constructed and the value of the rightmost maximum was taken as 
the characteristic attenuation coefficient value of the sample (Figure 7c, d). This approach was 
chosen to account for the bimodality of some of the images, which may arise from the presence 
of the stripes of gray matter in the tissue (2 samples) (example is presented on Figure 7a), or 
the presence of the non-transparent object (surgical suture), inserted in the sample for the 
convenience of the navigation in the sample (17 samples) (example can be seen on Figure 7b). 
The rest of the samples showed single-mode behavior, and for these samples the selected 

Fig. 6. FSP intuition. a,b – IHC images of the brain stem (a) and cortical area (b); c,d –
binarized fibers in the panels a and b; e – total number of pixels equal to 1 in the rows as a
function of the row number. The standard deviation of this value contributes to the proposed
FSP according to eq (7).

2.6. Characteristic attenuation coefficient values in brain areas

To evaluate the characteristic attenuation coefficient value in each OCT image the 64-bin
histogram of the value was constructed and the value of the rightmost maximum was taken as the
characteristic attenuation coefficient value of the sample (Fig. 7(c), d). This approach was chosen
to account for the bimodality of some of the images, which may arise from the presence of the
stripes of gray matter in the tissue (2 samples) (example is presented on Fig. 7(a)), or the presence
of the non-transparent object (surgical suture), inserted in the sample for the convenience of the
navigation in the sample (17 samples) (example can be seen on Fig. 7(b)). The rest of the samples
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showed single-mode behavior, and for these samples the selected approach for characteristic
attenuation coefficient value evaluation gives close results with the mean and median attenuation
coefficient values in the sample.
approach for characteristic attenuation coefficient value evaluation gives close results with the 
mean and median attenuation coefficient values in the sample.

Fig. 7. Characteristic attenuation coefficient value estimation in case of the bimodal distribution. a – images of the 
white matter (WM) entangled with the gray matter (GM); b – image of the white matter with the non-transparent 

object (surgical suture) inserted in the field-of-view (S); c,d – correspondent histograms with the red arrows 
indicating the obtained characteristic attenuation coefficient values.

2.5 Relation of the attenuation coefficient and IHC numerical features

To derive the relationship between the attenuation coefficient calculated from the OCT data 
and the IHC quantitative parameters, only OCT images with the corresponding IHC images 
were selected. Note that because some of the IHC images turned out to be with insufficient 
contrast and were screened out by an expert, some of the OCT images did not have the 
corresponding IHC image and some OCT images have several corresponding IHC images. In 
total 24 samples were selected for this part of the study with corresponding 68 IHC images. All 
possible sets of the attenuation coefficient and IHC characteristics values were formed for each 
set of images taken from the same sample near the same marker (surgical suture). In total, 154 
values sets were formed this way.

2.6 Statistical analysis

The statistical analysis pursued several goals. Firstly, the difference of the measured attenuation 
coefficient and IHC quantitative characteristics between investigated brain areas was evaluated 
the Mann-Whitney U test. The null hypothesis that for the randomly selected samples from two 
brain areas the probability of the sample from the brain area one been greater than the sample 
from the brain area two is equal to the probability of the sample from the brain area two been 
greater than the sample from the brain area one was tested. As an alternative hypothesis the 
statement that for randomly selected samples from two brain areas the probability of the sample 

Fig. 7. Characteristic attenuation coefficient value estimation in case of the bimodal
distribution. a – images of the white matter (WM) entangled with the gray matter (GM); b –
image of the white matter with the non-transparent object (surgical suture) inserted in the
field-of-view (S); c,d – correspondent histograms with the red arrows indicating the obtained
characteristic attenuation coefficient values.

2.7. Relation of the attenuation coefficient and IHC numerical features

To derive the relationship between the attenuation coefficient calculated from the OCT data and
the IHC quantitative parameters, only OCT images with the corresponding IHC images were
selected. Note that because some of the IHC images turned out to be with insufficient contrast
and were screened out by an expert, some of the OCT images did not have the corresponding
IHC image and some OCT images have several corresponding IHC images. In total 24 samples
were selected for this part of the study with corresponding 68 IHC images. All possible sets of
the attenuation coefficient and IHC characteristics values were formed for each set of images
taken from the same sample near the same marker (surgical suture). In total, 154 values sets
were formed this way.

2.8. Statistical analysis

The statistical analysis pursued several goals. Firstly, the difference of the measured attenuation
coefficient and IHC quantitative characteristics between investigated brain areas was evaluated the
Mann-Whitney U test. The null hypothesis that for the randomly selected samples from two brain
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areas the probability of the sample from the brain area one been greater than the sample from the
brain area two is equal to the probability of the sample from the brain area two been greater than
the sample from the brain area one was tested. As an alternative hypothesis the statement that for
randomly selected samples from two brain areas the probability of the sample from the brain area
one been greater than the sample from the brain area two is greater than the probability of the
sample from brain area two been greater than the sample from brain area one was tested. Note
that such one-sided test aims not only to establish statistically significant difference between two
brain areas, but also to establish which brain area has measured values been stochastically greater
than values in the other brain area. Thus, such a test produces asymmetric results for any pair of
brain areas: if the values in brain area one are bigger than the values in the brain area two with
statistical significance, the opposite statement (values in brain area two are greater than values in
brain area one) is false and should be rejected with high probability.

The next goal of the statistical analysis was to establish correlations between all the measured
values, both OCT-based and IHC-based. The correlations between the estimated attenuation
coefficient and quantitative IHC characteristics were established with partial correlations, which
allows one to estimate the correlation between two variables while controlling for the other
variables. The set of three IHC quantitative characteristics was evaluated with variance inflation
factor (VIF) [30]. The VIF value establishes how well one variable from the set can be represented
as a linear combination of the other variables. If VIF value is high (the cut-off of 5 is commonly
used), one can conclude that the multicollinearity in the dataset is high, i.e. some of the values in
the dataset are mere linear combination of the other variables.

Lastly, the dependence of the attenuation coefficient on the IHC quantitative characteristics was
established and the importance of each of IHC characteristics on the prediction of the attenuation
coefficient was analyzed. The attenuation coefficient was represented as a linear combination
of the standardized quantitative IHC characteristics using ordinary least squares regression. In
case of the variables standardization before the regression (i.e. subtraction of the mean a scaling
to the unit variance) the obtained regression coefficient can be treated as an importance of the
correspondent variable to the prediction of the dependent variable. Note that this statement is
true only if the multicollinearity among the independent variables is low. The quality of the
linear regression was accessed with the coefficient of determination (R2) [30] which shows how
much of the variance of the independent variable is accounted with the predictions of the model.
For linear least squares multiple regression with an estimated intercept term, R2 equals the
square of the Pearson correlation coefficient between the observed and predicted data points. The
impact of each of three IHC quantitative characteristics was also evaluated with the permutation
importance method [31]. The feature importance is defined as the drop in the metric of the
predictor performance (e.g. R2) when the values of the feature are randomly permutated. The
bigger the drop, the more important the variable for the predictor performance. Note, that this
approach also gives relevant results only in case of low multicollinearity among the independent
variables.

3. Results

3.1. Comparison of depth-resolved and log-and-linear-fit methods for attenuation
coefficient estimations

To compare conventional approach of attenuation coefficient estimation from OCT data the data
from a uniform scattering plastic sample was collected and attenuation coefficient was estimated
with both log-and-linear-fit method and the depth-resolved method, calculated according to the
Eq. (2). As one can see from Fig. 8, both methods leads to the same value of the attenuation
coefficient.

In Fig. 9 one color-coded maps of the attenuation coefficient distribution in the brain sample
obtained with two methods in the same depth ranges are shown. One can see better contrast and
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Fig. 8. a – OCT A-scan of the sample with uniform scattering coefficient; b – attenuation coefficient of the sample 
estimated with the depth-resolved method (blue line) and log-and-linear-fit approach (yellow line).

In Figure 9 one color-coded maps of the attenuation coefficient distribution in the brain sample 
obtained with two methods in the same depth ranges are shown. One can see better contrast and 
signal-to-noise for the maps obtained with the depth-resolved method for all depth ranges. The 
improved quality of the color-coded maps allows bigger number of fine details of the object to 
be clearly visualized.

Fig. 9. Color-coded maps of the brain sample, obtained with log-and-linear-fit approach (panels a,c,e,g) and the 
depth-resolved approach (panels b,d,f,h) in the same depth range.

3.2 Morphological differences of white matter from different brain regions

The morphological differences between white matter samples from different brain regions can 
be accessed both qualitatively (see Figure 6) and quantitatively (Table 1-3; note that the Tables 
show the results of on-sided test, i.e. not only shows that the values are different for the brain 
areas in the row and in the column, but that the values for the areas in the row are greater than 
the values for the area in the column). Visual analysis allows differentiating regions with large 
parallel fibers, separated by interspaces (Figure 10a), regions with densely packed thin fibers, 
forming a network structure (Figure 10d, e) as well as areas, characterized by both parallel and 
chaotically arranged fibers (Figure 10b, c).  The use of FSP makes it possible to differentiate 
almost all the studied areas among themselves, with the exception of the pairs of cortical area-
subcortical area, brainstem-corpus callosum and capsula interna-corpus callosum (Table 1). 
The areas that cannot be delineated using FSP can be distinguished by using NNP (Table 2), 
which emphasizes the importance of using these parameters in conjunction. The presence of 

Fig. 8. a – OCT A-scan of the sample with uniform scattering coefficient; b – attenuation
coefficient of the sample estimated with the depth-resolved method (blue line) and log-and-
linear-fit approach (yellow line).

signal-to-noise for the maps obtained with the depth-resolved method for all depth ranges. The
improved quality of the color-coded maps allows bigger number of fine details of the object to be
clearly visualized.
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signal-to-noise for the maps obtained with the depth-resolved method for all depth ranges. The 
improved quality of the color-coded maps allows bigger number of fine details of the object to 
be clearly visualized.
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depth-resolved approach (panels b,d,f,h) in the same depth range.
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show the results of on-sided test, i.e. not only shows that the values are different for the brain 
areas in the row and in the column, but that the values for the areas in the row are greater than 
the values for the area in the column). Visual analysis allows differentiating regions with large 
parallel fibers, separated by interspaces (Figure 10a), regions with densely packed thin fibers, 
forming a network structure (Figure 10d, e) as well as areas, characterized by both parallel and 
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almost all the studied areas among themselves, with the exception of the pairs of cortical area-
subcortical area, brainstem-corpus callosum and capsula interna-corpus callosum (Table 1). 
The areas that cannot be delineated using FSP can be distinguished by using NNP (Table 2), 
which emphasizes the importance of using these parameters in conjunction. The presence of 

Fig. 9. Color-coded maps of the brain sample, obtained with log-and-linear-fit approach
(panels a,c,e,g) and the depth-resolved approach (panels b,d,f,h) in the same depth range.

3.2. Morphological differences of white matter from different brain regions

The morphological differences between white matter samples from different brain regions can be
accessed both qualitatively (see Fig. 6) and quantitatively (Table 1–3; note that the Tables show
the results of on-sided test, i.e. not only shows that the values are different for the brain areas in
the row and in the column, but that the values for the areas in the row are greater than the values
for the area in the column). Visual analysis allows differentiating regions with large parallel
fibers, separated by interspaces (Fig. 10(a)), regions with densely packed thin fibers, forming a
network structure (Fig. 10(d), (e)) as well as areas, characterized by both parallel and chaotically
arranged fibers (Fig. 10(b), (c)). The use of FSP makes it possible to differentiate almost all the
studied areas among themselves, with the exception of the pairs of cortical area-subcortical area,
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brainstem-corpus callosum and capsula interna-corpus callosum (Table 1). The areas that cannot
be delineated using FSP can be distinguished by using NNP (Table 2), which emphasizes the
importance of using these parameters in conjunction. The presence of the region-specific set of
FSP and NNP values is more evident from the Fig. 10(f), where all the selected brain areas form
separable clusters in the space of the proposed IHC quantitative parameters. As can be seen from
the Tables 1, 2 and Fig. 10(f), all the samples pairs can be separated from each other with high
accuracy.

Fig. 10. Characteristic examples of the IHC images of the studied brain areas. a – brainstem; b – corpus 
callosum; c – capsula interna; d – subcortical area; e – cortical area. f – distributions of the calculated IHC numerical 

characteristics for the studied brain areas.

3.3 Optical properties of white matter from different brain regions

For each 3D OCT image attenuation coefficient values were calculated. Median values of the 
studied white matter groups are presented in the Table 4. It can be seen that maximum values 
of the attenuation coefficient were obtained for the cortical area (10.6 [9.9; 11.9] mm-1), and 
this region is significantly different from other brain areas: subcortical area (9.5 [8.8; 10.4] mm-

1, p=0.009), capsula interna (8.9 [7.5; 9.4] mm-1, p=0.0005), corpus callosum (9.1 [8.3; 9.2] 
mm-1, p=0.005) and brainstem (8.7 [8.5; 9.2] mm-1, p=0.001).

The result of pairwise comparison of selected white matter areas based on their attenuation 
coefficient values is presented in Table 3.

Fig. 10. Characteristic examples of the IHC images of the studied brain areas. a – brainstem;
b – corpus callosum; c – capsula interna; d – subcortical area; e – cortical area. f –
distributions of the calculated IHC numerical characteristics for the studied brain areas.

From Table 3 one can see that only brainstem has statistically lower fiber density in comparison
with other brain areas, while the values for the fiber density in all investigated brain areas lie in
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Table 1. Comparison of FSP of different white matter regionsa

Cortical area
(n= 19) 90.8
[85.2; 94.7]a

Subcortical
area (n= 14)
88.7 [85.7;

92.3]

Capsula Interna
(n= 9) 110.0

[102.8;111.5]a

Corpus
Callosum

(n= 9) 120.7
[115.0;125.3]a

Brainstem
(n= 17) 123.5
[118.4; 132.1]a

Cortical area
(n= 19)

- 0.39 0.99 0.99 0.99

Subcortical
area (n= 14)

0.62 - 0.99 0.99 0.99

Capsula Interna
(n= 9)

7*10−5 1*10−4 - 0.94 0.99

Corpus
Callosum

(n= 9)

1*10−4 3*10−4 0.07 - 0.88

Brainstem
(n= 17)

2*10−7 1*10−6 2*10−3 0.13 -

aP-values for the alternative hypothesis of the Mann-Whitney U test that the FSP values for the brain areas in the tables’
raw been stochastically greater than the values for the brain areas in the tables’ column are presented with p< 0.05 been
highlighted and underlined; aMe [Q1; Q3]: Me – median; [Q1;Q3] – 25th and 75th percentiles values respectively.

Table 2. Comparison of NNP values of different white matter regionsa

Cortical area
(n= 19) 183
[150; 225]a

Subcortical
area (n= 14) 91

[79; 106]

Capsula Interna
(n= 9) 81 [74;

95]a

Corpus
Callosum

(n= 9) 139
[119; 149]a

Brainstem
(n= 17) 86 [78;

100]a

Cortical area
(n= 19)

- 4*10−6 1.8*10−5 0.007 2*10−7

Subcortical
area (n= 14)

0.99 - 0.27 0.99 0.32

Capsula Interna
(n= 9)

0.99 0.75 - 0.99 0.70

Corpus
Callosum

(n= 9)

0.99 6*10−4 5*10−4 - 4*10−5

Brainstem
(n= 17)

0.99 0.69 0.31 0.99 -

aP-values for the alternative hypothesis of the Mann-Whitney U test that the NNP values for the brain areas in the tables’
raw been stochastically greater than the values for the brain areas in the tables’ column are presented with p< 0.05 been
highlighted and underlined; aMe [Q1; Q3]: Me – median; [Q1;Q3] – 25th and 75th percentiles values respectively.
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Table 3. Comparison of fiber density values of different white matter regionsa

Cortical area
(n= 19) 0.47
[0.46; 0.48]a

Subcortical
area (n= 14)

0.48 [0.47; 0.5]

Capsula Interna
(n= 9) 0.48
[0.47;0.49]a

Corpus
Callosum

(n= 9) 0.47
[0.46;0.48]a

Brainstem
(n= 17) 0.46
[0.45; 0.464]

Cortical area
(n= 19)

- 0.99 0.95 0.54 6*10−4

Subcortical
area (n= 14)

5*10−3 - 0.51 0.25 4*10−2

Capsula Interna
(n= 9)

0.055 0.77 - 0.14 4*10−5

Corpus
Callosum

(n= 9)

0.48 0.96 0.87 - 2*10−3

Brainstem
(n= 17)

0.99 0.99 0.99 0.98 -

aP-values for the alternative hypothesis of the Mann-Whitney U test that the fiber density values for the brain areas in the
tables’ raw been stochastically greater than the values for the brain areas in the tables’ column are presented with p< 0.05
been highlighted and underlined; aMe [Q1; Q3]: Me – median; [Q1;Q3] – 25th and 75th percentiles values respectively.

the relatively narrow range of values (0.45-0.5 for the smallest value of the Q1 and the biggest
value of the Q3 respectively).

3.3. Optical properties of white matter from different brain regions

For each 3D OCT image attenuation coefficient values were calculated. Median values of the
studied white matter groups are presented in the Table 4. It can be seen that maximum values of
the attenuation coefficient were obtained for the cortical area (10.6 [9.9; 11.9] mm−1), and this
region is significantly different from other brain areas: subcortical area (9.5 [8.8; 10.4] mm−1,
p= 0.009), capsula interna (8.9 [7.5; 9.4] mm−1, p= 0.0005), corpus callosum (9.1 [8.3; 9.2]
mm−1, p= 0.005) and brainstem (8.7 [8.5; 9.2] mm−1, p= 0.001).

Table 4. Comparison of Attenuation coefficient values of different white matter regions calculated
by depth-resolved methoda

Cortical area
(n= 14) 10.6
[9.9; 11.9]
mm−1 a

Subcortical
area (n= 22)

9.5 [8.8; 10.4]
mm−1

Capsula Interna
(n= 10) 8.9
[7.5; 9.4]
mm−1 a

Corpus
Callosum

(n= 8) 9.1 [8.3;
9.2] mm−1 a

Brainstem
(n= 10) 8.7
[8.5; 9.2]
mm−1 a

Cortical area
(n= 14)

- 0.009 0.0005 0.005 0.001

Subcortical
area (n= 22)

0.99 - 0.029 0.1 0.035

Capsula Interna
(n= 10)

0.99 0.97 - 0.77 0.66

Corpus
Callosum

(n= 8)

0.99 0.91 0.25 - 0.44

Brainstem
(n= 10)

0.99 0.97 0.37 0.59 -

aP-values for the alternative hypothesis of the Mann-Whitney U test that the attenuation coefficient values for the brain
areas in the tables’ raw been stochastically greater than the values for the brain areas in the tables’ column are presented
with p< 0.05 been highlighted and underlined;aMe [Q1; Q3]: Me – median; [Q1;Q3] – 25th and 75th percentiles values
respectively.
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The result of pairwise comparison of selected white matter areas based on their attenuation
coefficient values is presented in Table 3.

3.4. Partial correlations between attenuation coefficient and quantitative IHC charac-
teristics

On the dataset of 154 synthetic datapoints, created according to subsection 2.5, partial correlations
were calculated for the attenuation coefficient and each of the three quantitative IHC characteristics
and are presented in Table 5.

Table 5. Partial correlation of the attenuation coefficient a

FSP Number of nuclei Fiber density

Attenuation
coefficient

-0.49; [-0.61, -0.37]; 7*10−11 0.29; [0.14, 0.43]; 3*10−4 -0.09; [-0.25, 0.07]; 0.25

aPartial correlations for the attenuation coefficient with the IHC quantitative parameters controlling for the other two
parameters. 95% confidence interval and p-value for the partial correlations are also presented as p_corr; [ci_low,
ci_high]; p-value.

To ensure low multicollinearity among IHC quantitative parameters, variation inflation factor
was calculated for the set of three IHC parameters and presented in Table 6:

Table 6. Variation inflation factora

FSP Number of nuclei Fiber density

VIF 1.44 1.22 1.21

aVariation inflation factor for the IHC quantitative parameters.

The VIF value has the range from 1 to infinity, where 1 means no multicollinearity in the data
and the threshold value of 5 is conventionally used as an indicator for high multicollinearity. As
one can see from the Table 6, the multicollinearity among the quantitative IHC characteristics is
low and can be neglected in further analysis.

3.5. Attenuation coefficient linear regression on IHC quantitative characteristics

Attenuation coefficient value can be represented as a linear combination of quantitative IHC
parameters with linear regression. To be able to treat the linear regression coefficients as
the weights of the corresponding variables in the linear prediction model, all variables were
standardized before fitting the model. The predicted values of the attenuation coefficient based
on the IHC quantitative characteristics can be written as:

Attpred = Cfsp ×FSP′ + Cnucl × NNP′ + Cdens × Dens′ + C0

FSP′ =
FSP−meanFSP

stdFSP

NNP′ =
NNP−meanNNP

stdNNP

Dens′ = Dens−meanDens
stdDens

, (8)

where Attpred is the predicted value of the attenuation coefficient, FSP – fiber structural parameter,
meanFSP – mean value of the FSP, stdFSP – is the standard deviation of the FSP; NNP – number
of nuclei parameter, meanNNP – mean value of the NNP, stdNNP – is the standard deviation of the
NNP; Dens – fiber density parameter, meanDens – mean value of the fiber density, stdDens – is the
standard deviation of the fiber density; C0 is the constant intercept term. The coefficients were
found to minimize of the mean squared between measured and predicted attenuation coefficients.
The coefficients values are presented in Table 7:
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Since the multicollinearity among the IHC quantitative characteristics was low, the absolute
values of these coefficients can be treated as weights of the correspondent variable in the resulting
prediction of the attenuation coefficient.

Table 7. Linear regression coefficients for the three variables linear model

FSP Number of nuclei Fiber density Intercept

Coefficient value -0.62 0.30 -0.09 9.85

The quality of the prediction model was accessed with the coefficient of determination (R2)
which for the three parameter linear model was equal to 0.415, which can be understood as
40% of the attenuation coefficient variance was predicted based on linear combination of IHC
quantitative characteristics.

The importance of the variables on the prediction was also analyzed with permutation
importance method [31]. For this metrics the target independent variable was randomly permuted
and with the other two intact variables plugged into the linear regression model. The more the
R2 value of the predictions based on the permuted variable drops in comparison with the R2 of
the prediction based on all three intact variables, the more important this variable for the model
performance. In Table 8 one can see the permutation importance of all three IHC quantitative
characteristics for the prediction of the attenuation coefficient as a relation of the differences in
R2 before and after the permutation divided by the R2 before the permutation.

Table 8. Variables permutation importance for the three variables linear model

FSP Number of nuclei Fiber density

Permutation importance 1.4 0.35 0.02

Permutation importance of IHC quantitative characteristics represented as a relation of the
differences in R2 before and after the permutation divided by the R2 before the permutation.

The permutation importance greater than 1 means that some of the permutation leads to the
predictions to have negative correlation with the estimated attenuation coefficients values.

The scatterplots for all the IHC parameters vs the attenuation coefficient estimated from the
OCT data as well as the attenuation coefficient estimated from the IHC parameters with the linear
model vs the attenuation coefficient estimated from the OCT data are presented in Fig. 11.

The linear model based only on FSP and number of nuclei parameters was also built using
mean squared error minimization and the same analysis of feature importance was performed.
The R2 value for the two parameter linear model was 0.41. The coefficients values and the
permutation importance are presented in Tables 9 and 10 respectively.

Table 9. Linear regression coefficients for the two variables linear model

FSP Number of nuclei Intercept

Coefficient value -0.58 0.30 9.85

Table 10. Variables permutation importance for the two variables linear modela

FSP Number of nuclei

Permutation importance 1.20 0.36

aPermutation importance of IHC quantitative characteristics represented as a relation of the differences in R2 before and
after the permutation divided by the R2 before the permutation.
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Table 8. Variables permutation importance for the three variables linear model

FSP Number of nuclei Fiber density

Permutation 
importance 1.4 0.35 0.02

Permutation importance of IHC quantitative characteristics represented as a relation of the differences in R2 before 
and after the permutation divided by the R2 before the permutation.
The permutation importance greater than 1 means that some of the permutation leads to the 
predictions to have negative correlation with the estimated attenuation coefficients values.
The scatterplots for all the IHC parameters vs the attenuation coefficient estimated from the 
OCT data as well as the attenuation coefficient estimated from the IHC parameters with the 
linear model vs the attenuation coefficient estimated from the OCT data are presented in 
Figure 11.

Fig. 11. The dependence of the attenuation coefficient on the IHC quantitative parameters (a-c) and the attenuation 
coefficient estimated from the IHC parameters with the linear model vs the attenuation coefficient estimated from the 

OCT data (d).

The linear model based only on FSP and number of nuclei parameters was also built using mean 
squared error minimization and the same analysis of feature importance was performed. The 
R2 value for the two parameter linear model was 0.41. The coefficients values and the 
permutation importance are presented in Tables 9 and 10 respectively.

Table 9. Linear regression coefficients for the two variables linear model

FSP Number of nuclei Intercept

Coefficient 
value -0.58 0.30 9.85

Fig. 11. The dependence of the attenuation coefficient on the IHC quantitative parameters
(a-c) and the attenuation coefficient estimated from the IHC parameters with the linear model
vs the attenuation coefficient estimated from the OCT data (d).

4. Discussion

The development of methods for in vivo visualization of white matter and obtaining information
about its morphological features in real time is an important task, which solution will improve
the neurosurgical care to patients, as well as give impetus to experimental research aimed at
studying diseases associated with damage to myelinated fibers. In this study, for the first time we
have discovered the relationship between optical properties of the white matter of the brain and
its morphological features.

All the characteristics, calculated in the present study suggest the same conclusion: mean
number of fibers in the IHC images, calculated as a relation of the area occupied by the fibers to
the total area of an IHC image is a far less important parameter for predicting the attenuation
coefficient than the proposed fiber structural parameter and the number of nuclei. Fiber density
has approximately 5 times smaller partial correlation with the estimated attenuation coefficient
than the other two parameters, has approximately 5 times smaller weight in the linear regression
model and random permutation of the fiber density leads to only 2.1% drop in the coefficient
of determination of the model. The other two parameters show comparable importance to the
attenuation coefficient distribution according to all of the used metrics. Complete exclusion
of the fiber density parameter from the linear model leads only to slight drop in performance
from coefficient of determination of 0.415 to 0.410 (one should recall, that in case of mean
squared error minimization coefficient of determination is the Pearson correlation between the
predicted value and the prediction). Note that it was impossible to plot the predictions from the 3
parameters model and the two parameters model in a way that they will become distinguishable
in the figure. Such an apparent absence of the attenuation coefficient dependence from the fiber
density can be explained by the fact that the range of the fiber density values in the collected
dataset was small as can be seen from the Table 3. Thus, the dependence on the fiber density
could not be established from the dataset used in the study and more brain samples with wider
range of fiber density values should be used. However, the study suggests that the proposed Fiber
Structural Parameter together with the number of nuclei could be used as a predictor for the
sample attenuation coefficient.

The obtained dependences between the IHC quantitative parameters and attenuation coefficient,
estimated from the OCT data have a straightforward interpretation: the more scatterers a brain area
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has, the stronger the scattering from this brain area is. While the NNP has a clear interpretation
as a number of scatterers, the connection between the FSP and the number of scatterers in the
volume is less intuitive. The FSP grows with the number and size of empty spaces between the
fibers bundles, while the lower value indicated more uniform fill of the field-of-view with the
fibers. Since the total number of fibers in the field-of-view was the same in all of the studied
brain areas, the voids-and-bundles structure (as in the brainstem) leads to the areas of small
number of refractive index changes both in the voids and in the bundles, while uniform fill of the
field-of-view with fibers leads to its uniform fill with the refractive index changes. These changes
act as scattering centers, thus the higher value of the FSP corresponds to the lower number of
scatterers and visa-versa. These influence of the morphological structure to the value of the
attenuation coefficient has good correspondence with the statistically significant differences in
the attenuation coefficient values between the superficial white matter structures (cortical and
subcortical areas) and deep white matter structures (brainstem, corpus callosum and capsula
interna), as can be seen from the Tables 1–4. The difference in the function of these areas leads
to the difference in their morphological structures, which, in turn, leads to the differences in their
scattering properties and attenuation coefficient values.

The discovered dependencies between attenuation coefficients and IHC quantitative parameters
allow conclusions about the morphological state of the investigated area of the white matter, both
in terms of the number of nuclei and the structure of the myelinated fibers. This discovery opens
the opportunity for the usage of the OCT as a neuronavigation tool.

One should also note, that the proposed process for the derivation of the relation between the
IHC numerical characteristics and the attenuation coefficient, estimated from the OCT data, will
give valid useful results only in the case that the correlation between the parameters in every
group has the same sign (or equals to zero). If this hypothesis holds, the generated samples,
with independent values in two modalities (IHC and OCT), represent the worst-case scenario in
terms of the Pearson coefficient absolute value, i.e. any correlation within the groups of the same
sign as a global trend correlation will lead to the increase of the Pearson coefficient absolute
value. If the hypothesis does not hold, i.e. there are some groups with the correlation between
the values measured in two modalities (IHC and OCT) of the opposite sign from the global trend
correlation, one should admit that the so called Simpson’s paradox [32] is taken place and the
proposed analysis is inapplicable in this case. Additional experiments with the same samples
visualized in both modalities are required to assert the presence of the global trend.

The limitations of our study are mainly related to three different problems. First, it should be
emphasized that the study was carried out on post-mortem samples of the human brain, due to the
impossibility of conducting intraoperative examination of a number of areas and the impossibility
of taking samples of healthy brain tissue for histological examination. The amount of collected
samples is limited due to ethical considerations. In this regard, the continuation of experiments
with a larger amount of samples is required to confirm the obtained results. The second point that
should be mentioned is the inability to accurately compare the IHC and OCT images. We tried
to overcome this drawback by generating synthetic samples with both types of measurements,
which is described in detail in section 2.5. Unfortunately, it is unlikely to overcome the significant
difference in the size of images obtained by different methods. However, it is possible to adjust
the study protocol in order to mark each area where OCT data were obtained for subsequent
collecting of IHC images. The third limitation is associated with the process of preparation and
staining of histological sections. On the one hand, a slight change in the morphological properties
of tissue samples is possible during the preparation of histological sections, in particular, the
occurrence of dehydration when the samples are fixed in a formalin solution [33], which may
slightly distort the true morphological picture. On the other hand, as mentioned above, the use of
a manual technique for staining sections causes uneven staining, leading to the need to sort the
sections. Perhaps the use of a hardware technique will overcome this problem.
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5. Conclusion

Statistically significant correlation between morphological features of white matter based on the
quantitative evaluation of IHC images and its optical properties based on attenuation coefficient
estimated from OCT data was found. It was shown that commonly underlooked factors such
as number of nuclei and the arrangement of myelinated fibers strongly affect the attenuation
coefficient of the brain sample. The linear combination of the proposed quantitative characteristics
describing these morphological features accounts for 41% of the attenuation coefficient variance
in the collected dataset. The discovered dependencies between attenuation coefficients and IHC
quantitative parameters allow conclusions about the morphological state of the investigated
area of the white matter. This discovery opens the opportunity for the usage of the OCT as a
neuronavigation tool.
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